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Large Scale Data Visualization Using Parallel Data Streaming 

James Ahrens, Kristi Brislawn 
Los Alamos National Laboratory Kitware Inc. Argonne National Laboratory 

Ken Martin, Berk Geveci, C. Charles Law Michael Papka 

Abstract- Effective large-scale data visualization remains a 
significant and important challenge with analysis codes 
already producing terabyte results on clusters with thou- 
sands of processors. Frequently the analysis codes produce 
distributed data and consume a significant portion of the 
available memory per node. This paper presents an archi- 
tectural approach to handling these visualization problems 
based on mixed dataset topology parallel data streaming. 
This enables visualizations on a parallel cluster that would 
normally require more storage/memory than is available 
while at the same time achieving high code reuse. Results 
from a variety of hardware and visualization configurations 
are discussed with data sizes ranging near to a petabyte. 

Index Terms- Parallel Visualization, Large Scale Visualization, 
MPI, VTK 

I. INTRODUCTION 

Scientists are using computer simulations to resolve models 
of real world phenomenon, including models of the earth's 
environment, accelerator physics dynamics, and celestial 
bodies. With additional computing power and algorithmic 
advances, these models have been resolved to more detailed 
levels, increasing our understanding of the world around us. 
In engineering and product design, simulation continues to 
replace physical mockups resulting in reduced design cycle 
times and costs. Key to such applications is the visualiza- 
tion and analysis of simulation results. Simulations are 
usually run in parallel on clusters of high-bandwidth super- 
computers or PCs. The resulting datasets can be so massive 
in size they require the use of parallel computing resources 
of similar magnitude in order to effectively visualize them. 

While visualization of large datasets is not a new problem, 
it remains an important and difficult one. The traditional 
improvements in hardware capabilities continue to make 
larger datasets possible and more accessible. Improvements 
in networking software and hardware are promoting growth 
in networked computing clusters. It is expected that both 
the use of large dataset visualization and the size of the 
datasets will continue to grow. As both large and small 
scale parallel computing resources become commonplace 
for scientists, so must parallel visualization software that 
effectively utilizes these resources. 

Effective visualization of large datasets is a difficult prob- 
lem for a number of reasons. Current analysis codes are 
producing tera-element datasets distributed over thousands 
of processing nodes. In some cases many time steps are 

never stored to disk but must be visualized while in mem- 
ory on the processing nodes. This creates a problem since 
the visualization must share the already limited resources 
that the simulation is using. This is compounded by the fact 
that the visualization could potentially require more storage 
than the simulation does. Another difficulty is that some 
traditional visualization algorithms, such as streamline 
generation or mesh decimation, are not well suited to 
operating on distributed data or in parallel. Furthermore, 
visualizations often result in processing mixed dataset 
topologies even when the simulation dataset is of' a uniform 
topology. An iso-surface of a rectilinear grid is a common 
example of this issue. 

Our solution to these problems was to develop a visualiza- 
tion architecture based on mixed dataset-topology parallel 
data streaming. Clearly any viable solution must support 
parallel execution and visualization. Mixed topology 
parallel data streaming goes beyond this to incorporate data 
streaming so that the required storage resources for the 
visualization can be kept significantly smaller than that of 
the simulation. Additionally it supports such streaming even 
when the topology of the dataset is changing from one 
visualization algorithm to the next. 

The resulting architecture is implemented within the Visu- 
alization Toolkit (VTK) and includes specific additions to 
support MPI, memory limit based streaming of both im- 
plicit and explicit topologies, translation of streaming 
requests between topologies, and passing data and pipeline 
control between shared, distributed, and mixed memory 
configurations.' The architecture directly supports both sort 
first and sort last parallel rendering. 

The following sections of this paper will discuss related 
work, how to stream datasets in a pipeline architecture, how 
to add support for mixed topologies, and how to handle 
parallel processing. This paper is not intended to address 
soine known issues in large dataset visualization such as 
massively parallel IO, effective load balancing, or parallel 
rendering although their implications are briefly discussed 
and utilized. 

11. RELATED WORK 

While data streaming, parallel visualization, and mixed 
topology visualization are all known techniques, they each 
can be difficult and combining all three a significant chal- 
lenge. 



A number of out-of-core algorithms have been developed 
that support efficient streaming of large data.'5"6 The idea 
behind these approaches is to employ out-of-core or incre- 
mental algorithms with a controllable memory footprint. 
These methods include isosurfaces (modified marching 
cubes from disk) and related computational geometry work, 
streamlines, se aration and attachment lines, and vortex 

Typically the algorithm 
will extract pertinent features (e.g., an isosurface) and 
incrementally write the output to disk. Feature extraction is 
then followed by an interactive visualization of the ex- 
tracted feature. What these algorithms lack is an overall 
architecture. Typically they are designed to work independ- 
ently from and to disk storage. Sometimes they can be 
applied serially but at the cost of constantly reading and 
writing the data to disk between each algorithm, a poor use 
of the memory hierarchy. 

lines, 10,l ,,E,, 7,18,19,20,2 I ,22,23,24 

Systems such as OpenDX, AVS, and SCIRun do provide a 
pipeline infrastructure and can support parallel execution. 
OpenDX (formerly IBM Data Explorer) is a data-flow 
based visualization system providing numerous visualiza- 
tion and analysis algorithms for its users. The OpenDX 
software architecture relies on a centralized executive to 
instantiate, allocate memory and execute modules.' 
OpenDX supports threaded data-parallelism on shared- 
memory multiprocessors and distributed task parallelism. 
Both mechanisms were designed to support parallelism in 
the context of a centralized executive. For example, task 
parallelism is achieved by a remote module that informs the 
executive it is ready to execute and waits for a signal from 
the executive before continuing. 

SCIRun is a data flow based simulation and visualization 
system that supports interactive computational steering. 
SCIRun provides threaded task and data parallelism on 
shared-memory multipro~essors.~~~ An extension to SCIRun 
permits distributed memory task paralleli~m.~ SCIRun also 
uses a centralized executive and in this way is similar to 
OpenDX. 

AVS is another popular data-flow visualization system that 
provides a similar parallel architecture and support." A 
prototype extension supported data parallelism on the CM- 
5.12 All of these systems provide a tightly integrated pro- 
gramming environment that supports the interactive con- 
struction, execution and debugging of programs via a 
graphical user interface. The existence of a single point of 
control for program construction and execution (Le. the 
GUI) may have lead to the creation of a related centralized 
executive. Designing an efficient mechanism for controlling 
a large number of processes from a single centralized 
executive is difficult. 

In contrast to these systems, our approach avoids the use of 
a centralized executive and therefore provides a more 
scalable solution. Additionally our approach supports 
mixtures of task, data and pipeline parallelism on both 
distributed and shared memory multiprocessors. 

Other solutions, such as pV3 and Ensight, encompass a 
variety of techniques and support large/parallel data but are 
designed more as turn-key  application^.^ pV3, is an imple- 
mentation of the Visual3 visualization application in the 
PVM environment. The application operates on a network 
of heterogeneous computers that process data in pieces, 
ultimately sending output to a collector that gathers and 
displays the results. While successful, pv3 is not designed 
as a toolkit but more as a custom application. Furthermore, 
depending on a collector is problematic in the larger data 
environment. Similarly Ensight is easy to use but lacks the 
flexibility, and capabilities of our approach. 

All of the approaches described above lack the ability to 
stream data in memory when the dataset topologies are 
changing. As many visualization techniques can change the 
topology of the data this is an important consideration. 
Even when using unstructured grids, which are very gen- 
eral, there are situations where using a structured image is 
more efficient and best represented as an image and not 
another unstructured grid. 

111. STREAMING DATA 

The ability to stream data through a visualization pipeline 
offers two main benefits. The first is that visualizations that 
would not normally fit into memory or swap can be run 
where otherwise they could not. The second is that visuali- 
zations can be run with a smaller memory footprint result- 
ing in higher cache hits, and little or no swapping to disk. 
To accomplish this the visualization software must support 
breaking the dataset into pieces and correctly processing 
those pieces. This requires that the dataset and the algo- 
rithms that operate on it are separable, mappable, and result 
invariant. 

Separable. The data must be separable. That is, the 
data can be broken into pieces. Ideally, each piece 
should be coherent in geometry, topology, and/or data 
structure. The separation of the data should be simple 
and efficient. In addition, the algorithms in this archi- 
tecture must be able to correctly process pieces of data. 
Mappable. In order to control the streaming of the data 
through a pipeline, we must be able to determine what 
portion of the input data is required to generate a given 
portion of the output. This allows us to control the size 
of the data through the pipeline, and configure the al- 
gorithms. 
Result Invariant. The results should be independent of 
the number of pieces, and independent of the execution 
mode (Le., single- or multi-threaded). This means 
proper handling of boundaries and developing algo- 
rithms that are multi-thread safe across pieces that may 
overlap on their boundaries. 

Earlier results discuss an architecture for accomplishing this 
with regularly sampled volumetric data, such as images and 



 volume^.^ In that architecture consumers of data, such as 
rendering engines or file writers, make requests for data that 
are filfilled using a three-step pipeline update mechanism. 

The first step, Update Information, is used to determine the 
characteristics of the dataset. This request is made by the 
consumer of the data and travels upstream to the source of 
the data. The resulting information contains the native data 
type (such as float or short), the largest possible extent 
expressed as (imin, imax, jmin, jmax, b i n ,  kmax), the number 
of scalar values at each point, and the pipeline-modification 
time. The native data type and number of scalar values at 
each point are used in computing how much memory a 
given piece of data would require. The largest possible 
extent is typically the size of the dataset on disk. This is 
useful in determining how to break the dataset into pieces 
and where the hard boundaries are (versus the boundaries of 
a piece). The pipeline-modification time is used to deter- 
mine when cached results can be used. 

Many algorithms in a visualization pipeline must modifi 
the information during the Update Informution pass. For 
example a 2X image magnification algorithm would pro- 
duce a largest possible extent that is twice as large as its 
input. A gradient algorithm would produce three compo- 
nents of output for every input component. 

The second step, Propagate Update Extent, is used to 
propagate a request for data (the update extent) up the 
pipeline (to the data source). As the request propagates 
upstream, each algorithm must determine how to modify 
the request. Specifically, what input extent is required for 
the algorithm to generate its requested update extent. For 
many algorithms this is a simple one to one mapping but for 
others, such as a 2X magnification or gradient computation 
using central differences, the required input extent is 
different from the requested extent. This is the requirement 
that the algorithms be mappable. A side effect of the 
Propagate Update Extent pass is that it returns the total 
memory required to generate the requested extent. This 
enables streaming based on a memory limit. A simple 
streaming algorithm is to propagate a large update extent 
and if that requires exceeds the user specified memory 
limit, then to break the update extent into smaller pieces 
until it does fit. This requires that the dataset be separable. 
More flexible streaming algorithms can switch between 
dividing a dataset by blocks or slabs and by what axis. 

The final step, Update Data, causes the visualization 
pipeline to actually process the data and produce the update 
extent that was requested in step two. These three steps 
require a significant amount of code to implement but 
surprisingly their CPU overhead is negligible. Typically 
the performance speedup provided by better cache locality 
more than compensates for the additional overhead. The 
exception is when boundaries cells are recomputed multiple 
times because they are shared between multiple pieces. This 
is typical in neighborhood-based algorithms and creates a 
tradeoff between piece size (memory consumption) and 
recomputing shared cells (computation). 

This entire three-step process is initiated by the consumer 
of the data such as a writer that writes to disk or a mapper 
that converts the data into OpenGL calls. In both these 
cases the streaming is effective because the entire result is 
never stored in memory at one time. It is either written to 
disk in pieces or sent to the rendering hardware in pieces. It 
is also possible to stream in the middle of a visualization 
pipeline if there is an operation that requires a significant 
amount of input but produces a fairly small output. 

The use of streaming within VTK is simple. Consider the 
following C-code example. An instance of an analytical 
volumetric source is created called sourcel. It is then 
connected to a contour filter that is then connected to a 
mapper. A 50,000 Kilobyte memory limit is set on the 
mapper which will initiate streaming if the memory con- 
sumption exceeds that limit. Finally an actor, renderer, and 
render window, are created and the resulting image is 
rendered. The only change made to this program to support 
streaming is the call to SetMemoryLimit on the mapper. 

int main( int argc, char* argv[I ) 

/ /  The pipeline 
/ /  source 
vtkMySource* sourcel = vtkMySource::NewO; 
sourcel->SetStandardDeviation( 0.5 1 ;  

/ /  Iso-surfacing 
vtkContourFilter* ctf = vtkContourFi1ter::NewO; 
ctf-rSetInput(source1-SGetOutputO); 
ctf-SetValue(0, 220) ; 

/ /  create the mapper and set a memory limit 
vtkPolyDataMapper* mapper = 

vtkPo1yDataMapper::NewO; 
mapper-zSetInput (ctf->Getoutput 0 ) ; 
mapper->SetMemoryLimit(50000) ; 

/ /  create actor, renderer etc and then render 
vtkActor* actor = vtkActor::NewO; 
actor->SetMapper(mapper); 
vtkRenderWindow* rWin = vtkRenderWindow::NewO; 
vtkRenderer* ren = vtkRenderer::NewO; 
rWin->AddRenderer(ren); 
ren-rAddActor (actor) ; 
rWin->Render ( ) ; 

/ /  cleanup and delete code 

IV. MIXED TOPOLOGIES 

The preceding section described how to stream data but it 
didn’t consider the problems associated with streaming 
unstructured data or mixtures of structured and unstructured 
data. There are a number of challenges in streaming un- 
structured data. First an extent must be defined for unstruc- 
tured datasets. With regularly sampled volumetric data, 
such as images, an extent defined as (imin, imax, jmin, jmux, 
kmin, kmax) can be used but this does not work with unstruc- 
tured data. With unstructured data there are a few options. 
One is to use a geometric extent such as (Xmin, Xmax, ymin, 



ymax, zmin, zmux) but it is an cxpensive operation to collect 
the cells that fit into that extent and such an extent is 
difficult to translate into the extents used for structured data 
if they are not axis aligned (consider a curvilinear grid). 

A more practical approach is to define an unstructured 
extent as piece M out of N possible pieces. The division of 
pieces is done based on cells so that piecc 2 of 10 out of a 
1000 cell dataset would contain 100 cells. The approach for 
streaming based on a memory limit is the same as for 
structured data except that instead of splitting the data into 
blocks or slabs, the number of pieces, N, is increased. This 
fairly basic definition of a piece dictates that there isn’t any 
control over what cells a piece will contain, only that it will 
represent about 1/N ofthe total cells of the dataset. 

This raises the issue of how to support unstructured algo- 
rithms that require neighborhood information. The solution 
is to use ghost cells, which are not normally part of the 
current extent, but are included because they are required 
by the alg~rithm.’~ To support this we extend the definition 
of an unstructured extent to be piece M of N with G ghost 
levels. This requires that any source of unstructured grid 
data be capable of supplying ghost cells. There is a related 
issue in that some unstructured algorithms, such as contour- 
ing, operate on cells while others, such as glyphing, operate 
on points. Points on the boundary between two different 
extents will be shared resulting in duplicated glyphs when 
processed. To solve this we indicate what points in an 
extent are owned by that extent versus which ones are ghost 
points. This way point-based algorithms can operate on the 
appropriate points and yet still pass other points through to 
the cell based algorithms that require them. In the end both 
ghost cells and ghost points are required for proper process- 
ing of the extents. 

Consider Figure 1, which shows one piece of a sphere. The 

Figure 1. 

requested extent is shown in red and two ghost levels of 
cells are shown in green and blue. The points are colored 
based on their ownership so that all red points are owned by 
the requested extent, while the green and blue points 
indicate ownership of the points by other extents. Note that 
some cells use a mixture of points from different extents. 

Now that extents have been defined for both structured and 
unstructured data, the conversion between them must be 
defined. For most operations that take in structured data and 
produce unstructured, a block-based division can be used to 
divide the structured data into pieces until there are N 
pieces as requested. If ghost cells are required the resulting 
extent of the block can be expanded to include them. If 
ghost point information is required it can be generated 
algorithmically based on the largest possible extent and 
some convention regarding what boundary points belong to 
which extent. 

Converting an extent from unstructured to structured could 
be done in a similar manner except that it is inappropriate 
for most algorithms that convert unstructured data to 
structured. Consider a gaussian-splatting algorithm that 
takes an unstructured grid and resamples it to a regular 
volume. To produce one part of the resulting volume 
requires all the cells of the unstructured grid that would 
splat into that extent. With our definition of an unstructured 
extent, there is no guarantee that the cells in an extent are 
collocated or topologically related. So to generate one 
exlent of structured output requires that all of the unstruc- 
tured data be examined. While this could be done within a 
loop, our current implementation requires that when trans- 
lating from a requested structured extent to an unstructured 
extent, the entire unstructured input is requested. 

V. SWPORTING PARALLELISM 

Most large-scale simulations make use of parallel process- 
ing and often the results are distributed across many proc- 
essing nodes. This requires that the visualization algorithms 
be capable of operating in such an environment. Supporting 
parallelism requires some of the same conditions as stream- 
ing such as data separability and result invariance. It also 
requires asynchronous execution, data transfer and collec- 
tion. 

Data transfer is done by creating input and output port 
objects that can communicate between filters (i.e. algo- 
rithms) in different processes. Asynchronous execution is 
required so that one process is not unnecessarily blocked 
waiting for input from another process. Consider the 
pipeline in Figure 2. In this example Filter3 has two inputs. 
[ts first input, Filterl, is in another process so it is requires 
an input and output port for managing the cross process 
communication. Before Filter3 executes it must make sure 
both of its inputs have generated their data. A na’ive ap- 
proach would be to simply ask each input to generate its 
data in order. The problem is that while Filter3 is waiting 



for Filterl to compute its data, Filter2 would be idle. To 
solve this two modifications are made to the three-step 
update process. The first modification is to add a non- 
blocking method to the update process called Trigger 
Asynchronous Update. This method is used to start the 
execution of any inputs that are in other processes. Essen- 
tially this method traverses upstream in the pipeline and 
when it encounters a port, the port calls Update Data on its 
input. 

The second modification is to use the locality of inputs to 
determine in what order to invoke Update Data on them. 
The locality of an input is defined as 1.0 if the input is 
generated within the same process, 0.0 if the input is 
generated in a different process, and between 0.0 and 1 .O if 
the input is partially generated in one and partially in 
another (such as in a long pipeline where half of the algo- 
rithms are in one process and half in another.) This locality 
is computed as part of the Update Information call. So in 
Figure 1, Trigger Asynchronous Update would be sent to 
Filterl which would cause Filterl to start executing because 
it is in a different process. Filter2 would ignore the Trigger 
Asynchronous Update call since there are no ports between 
it and Filter3. Then Filter3 would call Update Data on 
Filter2 first, since it has the highest locality. Once Filter2 
has completed executing, Update Data would be called on 
Port2 which could already have the results in memory if 
Filterl (which has been executing since the Trigger Asyn- 
chronous Update call) has completed executing. 

In addition to the above infrastructure changes, process 
initialization and communication calls have been encapsu- 
lated into a class so that the user does not have to directly 
deal with them. Concrete subclasses have been created for 
distributed-memory and shared-memory processes using 
MPI and pthreads. Likewise a sort-last parallel rendering 
class was written that uses inter-process communication to 
collect and then composite parallel renderings into a final 
image. Centralized rendering is supported by collecting the 
polygonal data together using ports between processes 
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connected to an append filter in the collection process. 
Parallel rendering could also be implemented using polygon 
collection and then parallel rendering such as WireGL or a 
future parallel sort-middle approach? 

Given the above parallel data streaming architecture, a data 
parallel program can be created by simply writing a func- 
tion that will be executed on each processor. h i d e  that 
function each processor will request a different extent of the 
results based on its processor ID. Each processor can still 
take advantage of data streaming if its local memory is not 
sufficient, allowing this architecture to process extremely 
large scale visualizations. 

Consider modifylng the earlier C-code example to support 
data parallelism and streaming. First we define a function 
called process that contains the bulk of the pipeline creation 
and rendering. This function will be invoked by a vtkMulti- 
ProcessController that encapsulates the setup and initializa- 
tion of the processes. In this example the vtkMPlController 
subclass of vtkMultiProcessController is used. It is passed 
into the function as an argument and it provides information 
such as the process ID, and total number of processes. The 
visualization pipeline is created as usual but the requested 
piece (M) and total number of pieces gU) are set on the 
mapper. This way the mapper of each process will only 
create its piece of the total N pieces. The memory limit is 
still set in case generating piece M of N requires excessive 
memory. Then the request can be broken down into smaller 
subpieces by the mapper. The actor and renderer are created 
as usual and then an instance of the Treecomposite class is 
created and the render window assigned to it. This class 
encapsulates the sort-last parallel rendering technique. Then 
a Render call is made to the renderer that will start the 
rendering process, streaming, and finally the tree- 
compositing. The main() function creates an instance of 
vtkMPIController which is one of the subclasses of vtkMul- 
tiProcessController, assigns a function for it to execute and 
then executes it. 

Void process(vtkMultiProcessController* ctrl, 
void* arg) 

int myId = ctrl-sGetLocalProcessId0; 
int numPrcs = ctrl->GetNumberOfProcessesO; 

/ /  The pipeline 
/ /  source 
vtkMySource* source1 = vtkMy9ource::NewO; 
sourcel->SetStandardDeviation( 0.5 ) ;  

/ /  Iso-surfacing 
vtkContourFilter* ctf = vtkContourFi1ter::NewO; 
ctf ->SetInput (sourcel->Getoutput 0 ; 
ctf->SetValue(O, 220) ; 

vtkPolyDataMapper* mapper = 
vtkPo1yDataMapper::NewO; 

mapper-rSetInput(ctf->Getoutput0 ) ;  

/ /  Set the total number of pieces 
mapper->SetNumberOfPieces(numProcs) ; 
mapper->SetPiece(myId); 
mapper-~SetMemoryLimit(50000) ; 

( 

Figure 2 



vtkActor* actor = vtkActor::NewO; 
actor->SetMapper(mapper); 
vtkRenderWindow* rWin = vtkRenderWindow::NewO; 
vtkRenderer* ren = vtkRenderer::NewO; 
rWin->AddRenderer(ren); 
ren->AddActor(actor); 

/ /  setup the tree composite and render 
vtkTreeComposite *tc = vtkTreeComposite::NeY(); 
tc->SetRenderWindow(rWin); 
rWin->Render(); 

/ /  cleanup and delete code 

1 

( 
int main( int argc, char* argvil ) 

vtkMPIController* controller = 

controller->Initialize(&argc, &argv); 

controller->SetSingleMethod(procesa, 0); 
controller->SingleMethodExecuteO ; 
controller->Delete(); 
return 1; 

vtkMPIControl1er::NewO; 

1 

VI. RESULTS 

The results reported here are based on using an in memory 
analytic knction as a data source. This is designed to 
mimic visualizing data from a running simulation where the 
simulation data is in memory. This also avoids dealing with 
issues of massively parallel I/O which are beyond the scope 
of this paper. The data is organized as a regular volumetric 
dataset with a double precision scalar value computed at 
each point. Three different visualization examples were 
tested. The first two examples were tested on a cluster of 8 
SGI Origin 2000s each with 128 shared-memory proces- 
sors. The third example was tested on a cluster of eight PCs 
each with two shared memory processors. 

The first visualization example was a data parallel pipeline 
that computes an isosurface from the volume, computes a 
gradient magnitude field from the volume, then probes the 
gradient magnitude field with the isosurface and renders the 
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Figure 3 

result using a sort last parallel rendering technique.’ (see 
Figures 3 and 4) This example was run with input data sizes 
of 39 gigabytes, 1.1 terabytes, and 0.9 petabytes on con- 
figurations between 1 and 1024 processors. The polygons 
produced were rendered in software using Mesa. 

The 39-gigabyte run produced 20 million polygons. Its 
results are reported in terms of efficiency versus number of 
processors. The eficiency is a measure of how effectively 
the additional processors are being utilized. An efficiency 
of 1.0 represents a linear speedup versus the number of 
processors. The results are based on wall clock processing 
time required and include any time required to start the 
processes and allocate memory for each one. The 39 giga- 
byte test is small enough that for anything beyond 64 
processors the startup time dominates the actual calculation 
time. Consider that linear scaling would result in a ten 
second execution on 1024 processors while the time re- 
quired for MPI to start 1024 processes and for each of them 
to allocate their memory is on the order of 90 seconds. The 
results show linear performance up to about 64 processors. 
Beyond that the calculation is simply to quick to make 
using more processors worthwhile. If the visualization were 
to be generated at the end of each time step, so that the 
process could be kept running, then using 1024 processes 
would be of value. 

39 Gigabyte Data Parallel 
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The results of the 1.1 terabyte run are provided for 16 to 
1024 processors since running on one to eight processors 
would be too time consuming. This run produced 190 
million polygons and with the larger problem size the 
results are nearly linear across the entire range. The worst 
case is the results for 1024 processors that show an e a -  
ciency of 0.86 for a 418 second execution time. This is 
expected due to the process initialization time. 

The 0.9 petabyte run was tested on 1024 processors, re- 
quired 360,000 seconds, and produced 16 billion polygons. 
It is worth noting that the time required for this run was 
nearly linear with respect to the time required for the 1.1 
terabyte run on 1024 processors. This linearity is due to the 
streaming of the data. The 0.9 petabyte run requires the 
same memory footprint as the 1.1 terabyte run. 
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The second visualization example demonstrates task paral- 
lelism. In task parallelism there are multiple independent 
visualization pipelines. In this case there were three pipe- 
lines. The first pipeline is the probed isosurface pipeline as 
used in the first example. The second pipeline compules a 
gradient vector field from the input data, it then reduces the 
resolution and then creates oriented glyphs at each poinl. 
The third pipeline extracts a cut plane from the input data 
and displays it as shown in Figure 5. In a fully data parallel 
configuration all three tasks would be run on each processor 
similarly to the data parallel example. For contrast, in this 
test the tasks were distributed across the processors with the 
majority of the processors assigned to generating the probed 
isosurface. So the example is task parallel with each task 
using data parallelism across the processors it was sllo- 
cated. The results indicate successful task parallelism with a 
slightly less than linear speedup due to poor load balancing 
between the tasks. 

1.1 Terabyte Task Parallel 

32 64 128 256 512 1024 
Number of Processors 

The third example considered pipeline parallelism, where 
one processor performs some of the visualization while 
another per€orms the rest of it. This is common in cases 
where the graphics resources are available to only soinc o i  
the processors. We simulated this case by running the data 
parallel example on a cluster of eight Windows 2000 
machines connected via gigabit Ethernet. Each machinc had 
two processors and one accelerated OpenGL graphics card. 
We decided to use the scrcen for hardware accelerated 

rendering which limited us to eight hardware renderers even 
though there were sixteen processors. In this case the 
hardware rendering consumed less than one percent of the 
total time. 

Simple modifications to the first example allowed the use 
of both processors on a machine for the computation while 
only one processor was used to transmit the data to the 
rendering hardware. Sort-last compositing was used to 
combine the eight hardware renderings into the final buffer. 
This resulted in a linear speedup from eight to sixteen 
processors due to the high performance of the hardware 
rendering and low cost of the shared memory data transfer. 
This capability is significant since in many cases the 
hardware is not homogeneous and standard data parallel 
approaches will not fully utilize the available resources. In 
this case the first processor could render the data while the 
second processors was computing the next piece. For this 
hardware configuration it allowed the use of all sixteen 
processors where otherwise only eight would have been 
used. 

Figure 4 

VII. DISCUSSION 

While this paper has addressed some difficult issues, there 
are others that were not addressed that are still being 
researched. In many simulations with distributed data the 
ghost cells can only be obtained from other processes. 
Currently there is no standard mechanism for one process to 
determine where to find specific ghost cells. Ideally there 
would be an efficient mechanism so that an algorithm that 
required ghost cells could determine what process to 
request them from. Additionally some algorithms, such as 
streamlines, require parallel specific versions to be written 



that can pass information concerning when a streamline 
exits one piece and enters another. These issues are being 
actively researched in hopes of incorporating such capabili- 
ties into the architecture. 

This architecture has shown that parallel data streaming can 
be effectively used to visualize petabytc datasets across 
hundreds of processors even when the visualization would 
norinally require far more memory than is available. It 
provided a solution to the challenges associated with 
performing such streaming on mixed topology datasets and 
demonstrated data, task, and pipeline parallelism within a 
software framework that is intuitive and extensible. 

Figure 5 
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